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1. Introduction

A particularly interesting set of string theories is obtained by gauging N = 2 supercon-

formal symmetry on the worldsheet. The resulting model is called the N = 2 string [2].

This string theory is very attractive since it has the highest amount of supersymmetry on

the world-sheet with the positive critical dimension (d = 4). The simplest target space

for the N = 2 string is the four dimensional flat spacetime with signature (4, 0) or (2, 2).
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This theory is referred as the critical N = 2 string. The theory with (2, 2) signature can

be solved exactly at least perturbatively. The physical spectrum of it contains a single

massless scalar field whose dynamics is described by the mathematically beautiful theory

of self-dual gravity [3].

Since the critical N = 2 string has rich mathematical structure, it is natural to hope

that one can solve this string theory even non-perturbatively. Indeed in a similar setups like

two dimensional bosonic or N = 1 type 0 string theory we know matrix model duals [4, 5]

and can solve the theory non-perturbatively. These matrix models can be regarded as the

open string theory of D0-branes [6] via the open-closed duality. Hence it is very likely that

similar ideas can be applied to solve the N = 2 string.

In this paper we study the N = 2 string in a different background. The target space

is the N = 2 coset space (Kazama-Suzuki model) SL(2, R)n/U(1) × SU(2)n/U(1). In

contrast to the critical N = 2 string this theory has finite number of physical states. We

will refer to it as the N = 2 minimal string [7, 8]. Again it is natural to expect that this

model has the matrix model dual description as was true for the minimal bosonic [9] or

type 0 string [10].

From higher dimensional string theory viewpoint, it is expected that the BPS sector

of the Little String Theory (LST) (for recent review see [11, 12]) can be described by the

N = 2 minimal string [13]. LST appears in various decoupling limits of string theories

which contain NS5 branes or singularities. This theory was extensively studied using the

holographically dual description [14]. The simplest of LSTs are 5 + 1 dimensional theories

with sixteen supercharges. They arise from the decoupling limit of k type IIA or type

IIB NS5-branes in flat space. The holographic description of these theories is given

by closed strings in the near horizon geometry of NS5 branes–the CHS background [15].

Unfortunately, string theory in this background is strongly coupled due to the presence

of the linear dilaton. One way to avoid this problem is to consider the theory at a non-

singular point in the moduli space. The simplest such configuration corresponds to NS5

branes distributed on a circle. In this case the CHS background gets deformed into [16]

R
5,1 ×

(

SU(2)

U(1)
× SL(2)

U(1)

)

/Zk , (1.1)

where the Zk orbifolding ensures the R-charge integrality, i.e. imposes the GSO projection.

We see that the non-trivial part of the background (1.1) coincides with that of the minimal

N = 2 string.

It is instructive to consider the T-dual of the near horizon geometry of the NS5 branes.

Under T-duality the CHS background is mapped to a singular ALE1 space (the (1.1) is

mapped to the resolved ALE). Then the physical states of the N = 2 string correspond

to the deformation preserving the hyper-Kähler structure of the ALE space. In this sense

the theory becomes topological and can be equivalently described as the N = 4 topological

string (N = 4 TST) [18].

1The N = 2 string on the smooth ALE spaces defined by the orbifolds such as C
2/Z2 was studied in [17].

See also the appendix A of the present paper for the analysis of physical states for the C
2/ZN orbifold.
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We study the tree level scattering amplitudes in the N = 4 topological string formula-

tion using the equivalence between N = 2 string and N = 4 topological string theory [18].

We find that they are closely related to the amplitudes of the (1, n) minimal bosonic string2

by applying the recently found relation [21 – 24] between the correlation functions in the

SL(2, R) (or H+
3 ) WZW model and those in the bosonic Liouville theory. In particular we

show that the four- and five-point correlation functions of the N = 4 topological string can

be rewritten in terms of those of the (1, n) minimal bosonic string. Moreover using this

method we are able also to match some classes of higher point correlators. Even though

our analysis is not exhaustive, it is possible that these two string theories are actually

equivalent or at least closely related. In the end, based on this observation, we propose a

candidate matrix model dual for the N = 2 minimal string.

The paper is organized as follows. In section 2 we give a brief review of the N = 2

minimal string and analyze its physical states. In section 3 we study the N = 4 topological

string on ALE spaces which is equivalent to the N = 2 minimal string. In section 4 we

compute the tree level scattering amplitudes and relate them to those of the (1, n) minimal

string. In section 5 we discuss our results and propose a possible matrix model dual for

N = 2 minimal string.

2. N = 2 minimal string

2.1 Notations

In this subsection we set up notations. We are interested in string theories with SU(2)n/

U(1) × SL(2, R)n/U(1) N = 2 superconformal matter3 (we will often switch between

SL(2)/U(1) and the equivalent N = 2 Liouville descriptions). The N = 2 superconformal

algebra reads

[Lm, Ln] = (m − n)Lm+n +
c

12
m(m2 − 1)δm+n,0 ,

[Lm, G±
r ] =

(m

2
− r

)

G±
m+r ,

[Lm, Jm] = −nJm+n ,

{G+
r , G−

s } = 2Lr+s + (r − s)Jr+s +
c

3

(

r2 − 1

4

)

δr,−s ,

{G+
r , G+

s } = {G−
r , G−

s } = 0 ,

[Jn, G±
r ] = ±G±

r+n ,

[Jm, Jn] =
c

3
mδm,−n , (2.1)

2This connection was also speculated in [8] from the analysis of three point functions in the N = 2 string.

We can also find an earlier work [19] which implies a relation between the N = 2 string and c < 1 bosonic

string. It may also be closely related to the recent observation made in [20], where the equivalence between

the N = 2 topological string on AdS3 × S3 and the (1, n) minimal string is argued from the cohomology

analysis.
3Here n is the level of the supercoset WZW model. The bosonic part of the coset is given by

SU(2)n−2/U(1) × SL(2, R)n+2/U(1).

– 3 –
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where c is the central charge, Ln are the Virasoro algebra generators, G±
r are the modes

of the supercurrents (r ∈ Z + 1/2 in the Neveu-Schwarz and r ∈ Z in the Ramond sectors)

and Jn are the modes of the U(1) R-current.

Let us start by setting notation for the SU(2)/U(1) coset. The central charge for this

theory is

ĉ(su) ≡
c

3
= 1 − 2

n
. (2.2)

The NS sector SU(2)/U(1) superconformal primaries V are labeled by (j,m) quantum

numbers, where

2j ∈ Z, 0 ≤ 2j ≤ n − 2 ,

−j ≤ m ≤ j, j + m ∈ Z . (2.3)

The dimension and the R-charge of the operator V can be expressed in terms of m and

j as follows

∆(su) =
j(j + 1)

n
− m2

n
,

R(su) = −2m

n
. (2.4)

In order to unify the description of NS and R-sectors it is sometimes convenient to label

operators in the SU(2)/U(1) by three quantum numbers (j,m, s), where s is the spectral

flow parameter. Not all (j,m, s) are independent, there is a following equivalence relation

between them

(j,m, s) ∼ (
n − 2

2
− j,m +

n − 2

2
, s + 2) . (2.5)

s = 0, 2 correspond to NS operator, while s = ±1 to Ramond sector operators. The

dimension and the R-charge are

∆(su) =
s2

8
+

j(j + 1)

n
− (m + s/2)2

n
,

R(su) =
s

2
− 2m + s

n
. (2.6)

In the NS-sector for |m| < j only s = 0 sector corresponds to superconformal primaries

V(s=±2)
j,m ∼ G±

−1/2V
(s=0)
j,m±1 ≡ G±

−1/2Vj,m±1 . (2.7)

For m = ±j, V(s=±2)
j,±j is actually primary. Indeed using (2.5) we find

V(s=±2)
j,±j ∼ Vn−2

2
−j,±j∓n−2

2
. (2.8)

The spectral flow s → s ± 2 can be realized by using the spectral flow operator

SFO±
(su) = Vn−2

2
,∓n−2

2
. (2.9)

This can be easily shown by using the SU(2) fusion rules and the relation (2.5).
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We would also like to comment on the relation of the N = 2 minimal model to the

SU(2) WZW and the bosonic parafermions SU(2)/U(1). The SU(2)n−2 primary Ψj,m can

be expressed in terms of bosonic parafermion primary Vj,m as follows4

Ψj,m = Vj,me
i
q

2
n−2

mY3 . (2.10)

The SU(2) currents can be expressed using parafermionic currents ψ1 and ψ†
1

J− ∼ ψ1 exp

(

−i

√

2

n − 2
Y3

)

,

J+ ∼ ψ†
1 exp

(

i

√

2

n − 2
Y3

)

,

J3 ∼ i

√

n − 2

2
∂Y3 . (2.11)

The spectral flowed primary operator is defined

Ψw
j,m = Vj,me

i
q

2
n−2

(m+ n−2
2

w)Y3 . (2.12)

This has the eigenvalue J3 = m + n−2
2 w and the conformal dimension ∆ = j(j+1)

n + mw +
n−2

4 w2. Note that for the SU(2), because of the Weyl identification m ∼ m + (n − 2) only

spectral flow by w = ±1 are independent. Using the identification of the quantum numbers

(j,m,w) ∼
(

n − 2

2
− j,

n − 2

2
+ m,w − 1

)

, (2.13)

and the fact that the operator Ψj,m is SU(2) current primary only for −j ≤ m ≤ j we find

that

Ψw=±1
j,m = (J±

−1)
(j±m)

Ψw=0
n−2

2
−j,±n−2

2
∓j

. (2.14)

One can rewrite the N = 2 minimal model operators using the bosonic parafermions

(see [25] and the formula (4.47) and (4.51) in [13])

Vs
j,m = Vj,me

i
−2m+s

n−2
2√

n(n−2)
Y ≡ Vj,meiαm,sY . (2.15)

Field Y is essentially the bosonization of the R-current. The N = 2 supercurrents can also

be rewritten5 in term of ψ1 and ψ†
1

G+ ∼ ψ1 exp

(

i

√

n

n − 2
Y

)

,

G− ∼ ψ†
1 exp

(

−i

√

n

n − 2
Y

)

,

JR ∼ i

√

n − 2

n
∂Y . (2.16)

4We normalized the boson Y3 such that Y3(z)Y3(0) ∼ − log z.
5Again we normalized the boson Y such that Y (z)Y (0) ∼ − log z.
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Using these relations one can explicitly check (2.7). Now we are in position to express a

general correlator in the N = 2 minimal model in terms of correlators of SU(2) WZW
〈

Vs1
j1,m1

, · · · ,VsN

jN ,mN

〉

= 〈Vj1,m1, · · · VjN ,mN
〉
〈

eiαm1,s1Y · · · eiαmN ,sN
Y

〉

. (2.17)

Note that the R-charge conservation in the above formula requires

∑

mi −
n − 2

4
si = 0 , (2.18)

which means that we cannot lift the amplitude of bosonic parafermions to the amplitude

of SU(2) primaries, unless
∑

si = 0. But it can be lifted into an amplitude involving Ψw
j,m.

Indeed if we have

wi = −si/2 , (2.19)

the sum rule for Y3 momentum will be satisfied and we will get

〈Vs1
j1,m1

, . . . ,VsN

jN ,mN
〉 =

〈Ψw1
j1,m1

, . . . ,ΨwN

jN ,mN
〉〈eiαm1,s1Y · · · eiαmN ,sN

Y 〉
〈eiβm1,s1Y3 · · · eiβmN ,sN

Y3〉
, (2.20)

where (cr. (2.12))

βm,s =

√

2

n − 2

(

m − n − 2

4
s

)

. (2.21)

The case of chiral primary field (m = −j) is a bit different since it can be represented as

both s = 0 and s = 2 operator (2.8).

It is straightforward to compute the free field parts in the correlation function (2.20)

as follows

〈∏N
i=1 eiαmi,si

Y (zi)〉
〈∏N

i=1 eiβmi,si
Y3(zi)〉

=
∏

1≤i<j≤N

(zi − zj)
− 2

n
(mi−n−2

4
si)(mj−n−2

4
sj) . (2.22)

The discussion for SL(2, R)/U(1) case is essentially the same. Here the superconformal

operators V ′ are labeled by quantum numbers (h,m, s), where h is the SL(2, R) spin, m is J3

quantum number related to the R-charge and s is the spectral flow parameter. The formulae

for the central charge, the dimension and the R-charge of superconformal operators can be

obtained from the corresponding formulae for SU(2)/U(1) by taking j → −h, n → −n:

ĉ(sl) = 1 +
2

n
,

∆(sl) =
s2

8
− h(h − 1)

n
+

(m + s/2)2

n
,

R(sl) =
s

2
+

2m + s

n
. (2.23)

But there are also important differences. In particular, the formulae (2.5), (2.7), (2.8) and

(2.14), which can be rewritten6 as

(h,m, s) ∼
(

n + 2

2
− h,m − n + 2

2
, s + 2

)

,

6Φw
h,m denotes the spectral flowed primary [26] of SL(2, R)n+2 WZW model. It has the eigenvalue

J3 = m − n+2
2

w and the conformal dimension ∆ = −h(h−1)
n

+ mw − n+2
4

w2.

– 6 –
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V ′s=±2
h,m = G±

−1/2V
′s=0
h,m±1 ,

V ′s=±2
h,∓h ∼ V ′s=0

n+2
2

−h ,∓h±n+2
2

,

Φw=±1
h,m = (J±

−1)
m−h Φw=0

n+2
2

−h,∓n+2
2

±h
. (2.24)

only apply to the operators corresponding to the discrete (h ∈ R, h−m ∈ Z or h+m ∈ Z)

(chiral or anti-chiral) and degenerate representations (2h ∈ −Z>0, −|h| ≤ m ≤ |h|) of

SL(2). The spectral flow operator in the SL(2)/U(1) is

SFO±
(sl) = V ′

n+2
2

,±n+2
2

. (2.25)

We would like to derive the analog of the formula7 (2.20) for SL(2)/U(1)

〈V ′s1
h1,m1

, · · · ,V ′sN

hN ,mN
〉 =

〈Φw1
h1,m1

, · · · ,ΦwN

hN ,mN
〉〈eiα′

m1 ,s1
X · · · eiα′

mN ,sN
X〉

〈eβ′
m1,s1

X3 · · · eβ′
mN ,sN

X3〉
, (2.26)

where

β′
m,s =

√

2

n + 2

(

m +
n + 2

4
s

)

,

α′
m,s = −2m + sn+2

2
√

n(n + 2)
,

w = −s

2
. (2.27)

Finally we can also find the following formula analogous to (2.22)

〈∏N
i=1 eiα′

mi,si
X(zi)〉

〈∏N
i=1 eiβ′

mi,si
X3(zi)〉

=
∏

1≤i<j≤N

(zi − zj)
2
n

(mi+
n+2

4
si)(mj+ n+2

4
sj) . (2.28)

2.2 N = 2 minimal string theory

The N = 2 minimal string theory is defined by coupling the N = 2 minimal matter to

the N = 2 Liouville theory [27, 28], and gauging the world-sheet N = 2 superconformal

symmetry. The N = 2 minimal model is equivalent to the N = 2 coset SU(2)/U(1),

while the N = 2 Liouville theory is T-dual to the N = 2 coset SL(2, R)/U(1) via the

supersymmetric FZZ duality [16, 29]. Therefore the target space of the N = 2 minimal

string theory is given by the following product of two N = 2 superconformal cosets [30,

19] (as we will see below this product actually enjoys enhanced N = 4 superconformal

symmetry on the world-sheet)

[

SL(2, R)n
U(1)

× SU(2)n
U(1)

]

/Zn , (2.29)

with the total central charge

ĉtot = 2 , (2.30)

7In the same way as before we normalized the free boson X3 and X such that X(z)X(0) ∼ X3(z)X3(0) ∼
− log z.
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where the Zn orbifold in (2.29) ensures integral R-charges of states as required by the

modular invariance of the N = 2 string. The N = 2 string contains the usual (b, c)

conformal ghosts, two pairs of superconformal ghosts (β±, γ∓) and an additional (b̃, c̃)

fermionic ghost system, which arises from gauging the R-current. One can check that the

total central charge of the N = 2 ghost system is

ĉgh = −2 , (2.31)

which precisely matches the the central charge of the matter sector. It is convenient to

bosonize the β, γ system as follows

β± ∼ e−φ∓∂ξ±; γ± ∼ η±eφ± . (2.32)

The physical states of the N = 2 string theory are elements of cohomology groups of the

BRST operator

QBRST =
1

2πi

∮

dz jBRST , (2.33)

where the BRST current takes the form

jBRST = cT + η−eφ−G+ + η+eφ+G− + c̃Jm +
1

2
[cT gh + η−eφ−G+

gh + η+eφ+G−
gh + c̃Jgh] . (2.34)

The BRST current has non-singular OPE with the two picture number currents

jπ+ = −η+ξ− − ∂φ+; jπ− = −η−ξ+ − ∂φ− , (2.35)

and the ghost number current

jgh = −bc − b̃c̃ + η+ξ− + η−ξ+ . (2.36)

Hence the corresponding cohomology groups are labeled by the ghost number and the

picture numbers (Π+,Π−). One can define two picture raising operators

PCO± = {Q, ξ±} = c∂ξ± + eφ∓
(G± − 2η±eφ±

b ± 2∂(η±eφ±
)b̃ ± η±eφ±

∂b̃) . (2.37)

It is known [31] that unlike in the N = 1 superstrings, the picture raising operators (2.37)

are not isomorphisms of the cohomology groups at different pictures, which in general

complicates analysis of cohomologies.

Let us now discuss the cohomologies of the BRST operator at lower pictures and ghost

number one. We will follow closely the discussion in [7]. The BRST invariant operator in

the standard (−1,−1) picture can be written as 8

V
(−1,−1)
j,m = cVj,mV ′

h=−j,me−φ+e−φ− . (2.38)

8In this section we write only the chiral part of the operators to keep the expressions simple.
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The operator V and V ′ should be primaries of the corresponding N = 2 algebras, in order

for O to be BRST closed. This operator, for generic m, has images in the lower pictures.

This can be shown using (2.37). The result is

V
(0,−1)
j,m = cG−

− 1
2

(Vj,mV ′
−j,m)e−φ− . (2.39)

In general the BRST cohomologies in this picture have the following form

Õ = ce−φ− ṼṼ ′, (2.40)

where ṼṼ ′ satisfies

G+
r (ṼṼ ′) = 0 ,

G−
r−1(ṼṼ ′) = 0, r > 0 ,

∆(ṼṼ ′) =
1

2
,

q(ṼṼ ′) = −1 . (2.41)

These conditions are indeed satisfied for the V
(0,−1)
j,m , but it is easy to see that in this

picture there are additional BRST invariant operators corresponding to the fields which

are anti-chiral in SU(2)/U(1) and SL(2, R)/U(1) separately

φ
(0,−1)
h = ce−φ−Vn

2
−h, n

2
−hV ′

h,−h . (2.42)

It is clear that this operator is not of the form (2.39), hence does not have preimage in the

(−1,−1) picture. In this paper we will be mainly interested in the physical operators of

this type. Vertex operators based on chiral fields in the SU(2)/U(1) and SL(2)/U(1) can

be constructed in the similar manner. These vertex operators live naturally in the (−1, 0)

picture

φ
(−1,0)
h = ce−φ+Vn

2
−h,−n

2
+hV ′

h,h . (2.43)

The operators in the (0,−1) and (−1, 0) pictures are related via spectral flow, which can

be realized using the following BRST invariant operators

(S±)2 = e±b̃ceφ±e−φ∓ SFO∓
(su) SFO∓

(sl) . (2.44)

Indeed using (2.44) one can immediately see that

φ
(0,−1)
n+2

2
−h

= (S+)2φ
(−1,0)
h . (2.45)

In order to compute correlation functions one also needs the integrated form of these

operators in (−1, 0) and (0, 0) picture

φ
(0,−1)
h,int =

∫

e−φ−Vn
2
−h, k

2
−hV ′

h,−h , φ
(−1,0)
h,int =

∫

e−φ+Vn
2
−h,−n

2
+hV ′

h,h . (2.46)

Applying (2.37) one can easily find the form of these operators in the (0, 0) picture

PCO+φ
(0,−1)
h,int =

∫

c∂ξ+e−φ−Vn
2
−h, n

2
−hV ′

h,−h +

∫

G+
−1/2(Vn

2
−h, n

2
−hV ′

h,−h) ,

PCO−φ
(−1,0)
h,int =

∫

c∂ξ−e−φ+Vn
2
−h,−n

2
+hV ′

h,h +

∫

G−
−1/2(Vn

2
−h,−n

2
+hV ′

h,h) . (2.47)
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As we will see below it is sufficient for our purposes to retain only the second term in these

expressions. Restoring the z̄ dependence we find

PCO+ ¯PCO+φ
(0,−1)
int =

∫

d2zG+
−1/2Ḡ

+
−1/2(Vn

2
−h, n

2
−hV ′

h,−h) + · · · ,

PCO− ¯PCO−φ
(−1,0)
int =

∫

d2zG−
−1/2Ḡ

−
−1/2(Vn

2
−h,−n

2
+hV ′

h,h) + · · · . (2.48)

It is also interesting to note that the operators PCO± may map the BRST non-

trivial operators into the BRST trivial ones. This statement in the free N = 2 string

translates into the statement that picture changing acts as an isomorphism of the BRST

cohomology groups only for the states with non-zero momentum. The simplest example of

such phenomenon is the operator

O = ce−φ−e−φ+1 . (2.49)

This operator is mapped into zero by the action of both PCO±. In general BRST non-

trivial operators of the type

O = ce−φ−e−φ+VV ′ , (2.50)

where V and V ′ are (anti-)chiral primaries of SU(2)/U(1) and SL(2)/U(1) respectively are

mapped into zero by the action of PCO+ (PCO−).

Finally, to check the consistency of the string theory we need to find a modular invariant

partition function. We worked this out in the appendix C.

3. Equivalent description as N = 4 topological string on ALE spaces

3.1 Exhibiting the N = 4 structure of SU(2)/U(1) × SL(2)/U(1) N = 2 theory

As noted in [32, 18] any N = 2 superconformal theory with the central charge

ĉ = 2 , (3.1)

automatically has N = 4 superconformal symmetry. The N = 4 superconformal algebra

is defined by the energy-momentum tensor T , the four supercurrents (G+, G̃+, G−, G̃−)

and the SU(2) currents (J++, J−−, J3). J3 is identified with the R-current in the N = 2

subalgebra. (G+, G̃+) have J3 charge +1 while (G−, G̃−) have the −1 charge.

For the particular value (3.1) of the central charge the spectral flow operators SFO±

have the R-charge ±2 and dimension one and hence can serve9 as J++ and J−− currents

of the N = 4. In the case at hand

J±± = SFO± ≡ SFO±
(su) SFO±

(sl) . (3.2)

Also G̃+ and G̃− can be found as

G̃+
r = [J++

0 , G−
r ] , G̃−

r = [J−−
0 , G+

r ]. (3.3)

9We work in the notations of [18].
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It is well known that the deformations of the theory which respect the N = 2 structure

are in one to one correspondence with chiral operators of R-charge 1 and dimension 1/2.

A deformation by an operator V respects the N = 4 structure10 iff [18]

G+
−1/2V = 0, G̃+

−1/2V = 0, J++
0 V = 0, J−−

0 V is anti − chiral . (3.4)

It is instructive to check that the deformations of the type

Vh = Vn
2
−h,−n

2
+hV ′

h,h , (3.5)

respect the N = 4 structure. The first of the (3.4) relations is obviously satisfied, since

both SU(2)/U(1) and SL(2)/U(1) operators are chiral primaries. Using (2.5) one can see

also that11

J−−
0 Vh = V̄n+2

2
−h , (3.6)

hence the fourth relation is also correct. It is not hard to show that the second and third

relations also hold. We notice that the Vh deformations are in one to one correspondence

with the accidental cohomologies φ
(−1,0)
h of the N = 2 string (2.42). One can similarly

check that the deformations which correspond to the V
(−1,0)
j,m (see (2.39))

G+
−1/2(Vj,m,V ′

h=−j,m) ≡ G+
−1/2Vj,m , (3.7)

also respect the N = 4 structure.

3.2 Geometrical interpretation

The target space defined by the ĉ = 2 coset space (2.29) can also be regarded as the resolved

An−1 singularity [19, 16]12

xn + y2 + z2 = µsl . (3.8)

The deformation parameter µsl is equal to the N = 2 cosmological constant in the dual N =

2 Liouville theory. This background can be regarded as regularized CHS geometry [15, 30].

Indeed it is well-known that it is T-dual to the near horizon geometry of n NS5-branes

situated on a circle of radius r0 ∼ (µsl)
1
n [16].

The Kähler and complex structure deformations of the ALE space are described by the

(c, c), (a, a), (a, c) and (c, a) rings of the SCFT (2.29). There are 4(n−1) such deformations

for the An−1 ALE space–two complex structure and two Kähler deformations for each 2-

cycle.

These deformations are described in the SCFT by the interaction terms on the world-

sheet (we show only left-moving part)

n−1
∑

i=1

(

t
(i)
1L

∫

G−
−1/2V

(i) + t
(i)
2L

∫

G̃−
−1/2V

(i)

)

, (3.9)

10The third and fourth conditions are always true in the unitary SCFT when V is a chiral field with the

R-charge +1. Here we are not assuming the unitarity of the underlining SCFT.
11We define the complex conjugate V̄h of Vh by V̄h = Vn

2
−h, n

2
−hV ′

h,−h, flipping the sign of J3.
12To make the connection with the coset CFT (2.29) clearer we can express it in the homogeneous

coordinates as xn + y2 + z2 − µsl u−n = 0. The N = 2 Landau-Ginzburg model for W = xn and W = u−n

is equivalent to the SU and SL part of the coset [19].
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where the second term can be written as G+V̄ 13. By adding the right-moving sector,

we have four parameters14 t
(i)
1L, t

(i)
2L, t

(i)
1R and t

(i)
2R for each i = 1, 2, . . . , n − 1. The four

combinations t
(i)
1Lt

(i)
1R, t

(i)
1Lt

(i)
2R, t

(i)
2Lt

(i)
1R and t

(i)
2Lt

(i)
2R are the moduli corresponding to the i−th

2-cycle.

As we have seen in the previous subsection there are n − 1 operators (again we show

only the left moving part) of the type (3.5) in our model (2.29)

Vh (2h − 1 = 1, 2, . . . , n − 1) . (3.10)

After including the right movers we get exactly 4(n − 1) operators. These operators are

responsible for the Kähler and complex structure deformations of the ALE space. Notice

that this finite number of allowed states come from the familiar bound (2.3) of j in the

SU(2)n−2 model and it is also consistent with the unitarity bound of SL(2, R)n+2 model [26].

Similarly, we can check that n − 1 twisted sector states exist in the orbifold C
2/Zn which

satisfy (3.4) as we show in the appendix A (see also [17]).

In addition to the states (3.10) there exist other deformations (3.7) which come from

(−1,−1) picture states. At present we do not have any clear geometrical interpretation of

them. As we cannot find any such states as (3.7) in the orbifold case C
2/Zn, the number

of this type of states may not be conserved in the geometrical deformations of the theory.

Thus we will concentrate on the states (3.10) in the rest of this paper.

3.3 Definition of N = 4 topological string

Sometimes it is useful to employ the N = 4 topological string description which is known

to be equivalent to the N = 2 string [18].

The N = 4 topological string is defined as follows. Consider a ĉ = 2 N = 4 SCFT and

perform the usual topological twist T → T + 1
2∂J3 [34, 18]. After the twist the operators

G+ and G̃+ have the conformal dimension ∆ = 1, while G− and G̃− have ∆ = 2. Since the

former ones satisfy (G+
0 )2 = (G̃+

0 )2 = {G+
0 , G̃+

0 } = 0, they behave like BRST operators.

The physical states have R-charge one and are the top components of an SU(2) doublet,

whose bottom components are anti-chiral with R = −1. They satisfy

G+
0 V = G̃+

0 V = 0 , (3.11)

and are subject to equivalence relation V ∼ V + G+
0 G̃+

0 χ. Conditions (3.11) are equivalent

to (3.4) before we take the topological twist. Hence the physical states of the N = 4 string

are in one to one correspondence with the (−1, 0) picture states of the N = 2 string.

3.4 Physical states in N = 4 topological string

Here we summarize physical states in N = 4 topological string on the ALE spaces. We

present the vertex operators from the NS-sector viewpoint before the topological twisting.

In this paper we are mainly interested in the operators of the type (3.5), which are

separately chiral in the SU(2)/U(1) and SL(2)/U(1) sectors of the theory. As we have

13Indeed using (3.6) and (3.3) one can show that G+V̄h = G̃−V n+2

2
−h

.
14In the notation in [18], [33] these correspond to the twistor variables u1L, u2L, u1R, u2R.
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seen above these operators correspond to the special cohomologies of the N = 2 string

in the (−1, 0) picture. Then we find (n − 1) physical states (3.5) corresponding to the

deformations which respect the N = 4 structure (we show only left-moving index m and

omit m̄)

Vh = Vn/2−h,−n/2+hV ′
h,h , (3.12)

where h runs over n − 1 half integers h = 1, 3/2, . . . , n/2.

One also finds (n − 1) antichiral states, which correspond to (0,−1) picture special

cohomologies of the N = 2 string

J−−
0 Vh = V(s=−2)

n/2−h,−n/2+hV ′(s=−2)
h,h = Vh−1,h−1V ′

n/2−h+1,−n/2+h−1 , (3.13)

where to get the last line we used (2.5) and (2.24). We will see below that they are needed

to define the correlators of the N = 4 TST. These chiral and anti-chiral states correspond

to the two types of the deformations t
(i)
1 and t

(i)
2 in (3.9), respectively.

Finally we would like to mention again that there are other physical states (3.7) whose

geometrical meaning is not clear. It would be an interesting future problem to study them

further. See [8] for the tree level scattering amplitudes for these states.

4. Scattering amplitudes in the N = 4 topological string on ALE

4.1 N = 4 topological string amplitudes

Let us consider N ≥ 4 particle scattering amplitudes AN in N = 4 topological string at

tree level. Following Berkovits and Vafa [18] it is defined by

AN =

〈

[
∫

d2z1J
−−
L J−−

R V1(z1)

]

V2(z2) V3(z3) V4(z4)
N
∏

a=5

∫

d2zaG
−
LG−

RVa(za)

〉

TST

.

(4.1)

The physical states Vi have the R-charge R = 1 and the topological dimension 0. The total

R-charge is
∑N

i=1 qi − 2 − (N − 4) = 2 = ĉ, which shows the charge conservation violation

(or ghost number anomaly) familiar in topological string.

The integrated vertex operators
∫

d2zaG
−
LG−

RVa(za) correspond to one of the four de-

formations t1Lt1R in (3.9). The other three vertex operators can be found by replacing

either or both of G−
L,R with G̃−

L,R.

To compute the correlation function (4.1) we need to rewrite it in terms of untwisted

correlators. Then we can compute it using the results in conformal field theory. This can

be done by inserting the spectral flow operator J−−. We insert it at the point z = z2,

though it can be inserted at any point (refer to e.g. [35]). Then the (4.1) can be written as

AN = |z2 − z3|2|z2 − z4|2
〈

[
∫

d2z1|z1 − z2|−2J−−
0L J−−

0R V1(z1)

]

[J−−
0L J−−

0R V2(z2)]

·V3(z3) V4(z4)

N
∏

a=5

∫

d2zaG
−
−1/2LG−

−1/2RVa(za)
〉

untwitsed
. (4.2)
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This formula can be easily understood from the point of view of the N = 2 string.

Indeed using (2.43), (2.46) and (2.48) we find

AN = 〈φ(0,−1)
1,int φ

(0,−1)
2 (z2)φ

(−1,0)
3 (z3)φ

(−1,0)
4 (z4)

N
∏

a=5

|PCO−|2φ(−1,0)
a,int 〉 , (4.3)

where

φ(−1,0) = ce−φ+V ,

φ(0,−1) = (S+)2φ(−1,0) , (4.4)

and the operator φint is defined by formulae (2.46) and (2.47). We see that only the first

term in (2.48) contributes to the correlator (4.3) due to anomalous conservation of ∂φ±
currents.

From the physical string theory viewpoint, the amplitudes AN (4.2) or (4.3) compute

the coupling of 4 RR-fields and N − 4 NSNS-fields in the Little String Theory15. In the

case of the four point functions this was discussed in [13].

We can identify the vertex Va and the spectral flowed one J−−
0L J−−

0R Va in (4.2) with

the physical states (3.12) and (3.13). In particular, we will find convenient the following

expressions which are equivalent to (3.12) and (3.13) via the identity (2.8) (we suppress

the right-moving part)

Vh = V(s=2)
h−1,h−1V ′(s=0)

h,h ,

J−−
0L J−−

0R Vh = V(s=0)
h−1,h−1V ′(s=−2)

h,h . (4.5)

We also find another equivalent representation using (2.24)

Vh = V(s=0)
n/2−h,−n/2+hV

′(s=2)
n+2

2
−h,−n+2

2
+h

,

J−−
0L J−−

0R Vh = V(s=−2)
n/2−h,−n/2+hV ′(s=0)

n+2
2

−h,−n+2
2

+h
. (4.6)

The integrated vertex operators16 take the form G−
−1/2V . The G− action is divided

into two parts depending on whether it acts on the SL(2, R) or SU(2) part. The former is

given by

G
−(sl)
−1/2Vh = V(s=2)

h−1,h−1V ′(s=−2)
h,h+1 , (4.7)

while the latter is

G
−(su)
−1/2 Vh = V(s=−2)

n
2
−h,h−n

2
+1V ′(s=2)

n+2
2

−h,−n+2
2

+h
. (4.8)

We also need the vertex operators in which G− is replaced by G̃−. Since Vh is chiral

separately in both components it is very easy to find the action of G̃−
−1/2

G̃−
−1/2Vh = [J−−

0 , G+
−1/2]Vθ=0 = −G+

−1/2J
−−
0 Vj . (4.9)

15In terms of the low-energy effective action, these interactions schematically look like Tr[F 4BN−4], where

F is the six dimensional U(1)n gauge field and B is the Higgs boson corresponding to the transverse motion

of NS5-branes.
16We determined the normalization of these operators such that the cyclicity of amplitudes holds.
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This is divided into two parts: one obtained from the SU(2) action of G̃

G̃
−(su)
−1/2 Vh = −V(s=2)

h−1,h−2V ′(s=−2)
h,h (4.10)

and the other one from the SL(2, R) action

G̃
−(sl)
−1/2Vh = −V(s=−2)

n
2
−h,−n

2
+hV ′(s=2)

n+2
2

−h,−n+2
2

−1+h
. (4.11)

The correlators which involve G̃− can be treated in the N = 2 string equally well. In

general if one has an amplitude with L − 4 G− and N − L G̃−, then

A(N,L) =

〈

φ
(0,−1)
1,int φ

(0,−1)
2 (z2)φ

(−1,0)
3 (z3)φ

(−1,0)
4 (z4)

×
L

∏

a=5

|PCO−|2φ(−1,0)
a,int

N
∏

a=L+1

|PCO+|2φ(0,−1)
a,int

〉

. (4.12)

4.2 Relation between SL(2, R) WZW model and bosonic Liouville theory

To evaluate (4.2), we need the N -point correlation functions in the supercoset SCFT (2.29).

They are essentially reduced to the bosonic SU(2)n−2 and SL(2, R)n+2 WZW model as can

be seen from the formulae (2.20) and (2.26). This is because the fermions (i.e. super-

partners)in the supercoset are essentially free.

Even though there are no known general expressions for them except for the three

point functions [36, 37], recently a remarkable relation has been uncovered [21 – 24] between

correlation functions in the bosonic SL(2, R)n+2 WZW model17 and those in the bosonic

Liouville theory. In this subsection we review this relation for later convenience. In the

recent paper [1], the computations of N -point functions in the N = 2 topological string

on SL(2, R)/U(1) WZW model have been done in order to find further evidence for the

equivalence between the twisted coset with the level n = 1 or n > 1 and the c = 1 string [38]

or the (non-minimal) c < 1 string [39] (see also the recent discussion [40]).

The bosonic Liouville field φ has background charge Q = b + 1/b and the Liouville

interaction is given by

Lint = µ

∫

d2ze2bφ . (4.13)

In the mentioned relation, the bosonic SL(2, R)n+2 model is mapped to the bosonic Liouville

theory with b = 1√
n

and µ = b2

π2 . This model has the central charge c = 1 + 6(n + 1)2/n.

Notice that when n is integer this Liouville theory appears in the (1, n) minimal bosonic

string. The (spectral flowed) primary field Φw
h,m,m̄ is mapped to the primary Uγ = e2γφ in

the Liouville CFT, where γ is defined by18

γ = b(1 − h) +
1

2b
=

1√
n

(1 − h) +

√
n

2
. (4.14)

17We assume the usual analytical continuation of the H+
3 model to find results in the SL(2, R) WZW

model.
18Notice that our definition of h is related to the ordinary spin j in [21], [22], [23], [24] via j = −h.
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Then the explicit map of N -point functions in both theories is given by19[21 – 24]
〈

N
∏

i=1

Φwi

hi,mi,m̄i
(zi)

〉

P

i wi=r>0

=
2π3−2N b(cn+2)

r

(N − r − 2)!

N
∏

l=1

Nhl,ml,m̄l
· δ(2)

(

∑

l

ml −
n + 2

2
r

)

×
∣

∣

∣

∣

∣

∏

l<l′

z
βll′
ll′

∣

∣

∣

∣

∣

2
∫ N−2−r

∏

a=1

dy2
a

∏

a<a′

|ya − ya′ |n+2 ·

∣

∣

∣

∣

∣

∣

∏

l,a

(zl − ya)
−n+2

2
+ml

∣

∣

∣

∣

∣

∣

2

×
〈

N
∏

l=1

Uαl
(zl)

N−2−r
∏

a=1

U− 1
2b

(ya)

〉

, (4.15)

where we defined zij = zi − zj and

βll′ =
n + 2

2
− n + 2

2
wlwl′ + wlml′ + wl′ml − ml − ml′ ,

Nh,m,m̄ =
Γ(h − m)

Γ(1 + m̄ − h)
. (4.16)

Also cn+2 is a certain unknown constant which depends on n. A similar formula for total

negative winding number
∑

i wi = −r < 0 can be found by setting mi → −mi.

Below we will be interested in the case r = N −2, where the maximal winding number

violation occurs. Only in this case (and also in the minimally violated case), we do not

have any insertions of the vertex U− 1
2b

(ya) and get the following simple formula.20

〈

N
∏

i=1

Φwi

hi,mi,m̄i
(zi)

〉

P

i wi=N−2

= 2π−1b · (cn+2/π
2)N−2 ·

N
∏

l=1

Nhl,ml,m̄l
(4.17)

·δ(2)

(

∑

l

ml −
n + 2

2
(N − 2)

)

·
∣

∣

∣

∣

∣

∏

l<l′

z
βll′
ll′

∣

∣

∣

∣

∣

2

·
〈

N
∏

l=1

Uαl
(zl)

〉

.

4.3 Emergence of (1, n) minimal bosonic string

To analyze (4.2) we also need to express the N -point functions of the bosonic SU(2)n−2

WZW in terms of correlators in the minimal model. In order to establish this corre-

spondence recall that the SU(2) algebra at the level k = n− 2 is the same as the SL(2, R)

algebra at the negative level k = −n−2. Employing this fact, we can regard the correlation

functions of the SU(2) model as those in the SL(2, R) model.

19Our definition of the winding number w is opposite to the references mentioned. In terms of the primary

in the N = 2 coset, the quantum number s is related to w via (2.27) (2.19).
20This relation can be intuitively understood from the equivalence between the N = 2 twisted coset

SL(2, R)n+2/U(1) and the c ≤ 1 string as noted in [39, 1]. Consider the free field representation (Wakimoto

representation) of SL(2, R)n+2 WZW model in terms of a bosonic scalar field with the background charge

Q = 1√
n

as well as the bosonic ghosts (β, γ). After the topological twist, the background charge of the

scalar field becomes Q =
√

n+ 1√
n
, which is the same as the one in the Liouville theory with b = 1√

n
. Then

we can indeed confirm the equivalence in the free field representation as in [38, 39].
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This leads to the relation between the bosonic SU(2)n−2 WZW model and the bosonic

Liouville theory with the imaginary parameter b = − i√
n
, which has the central charge

c = 1−6(n−1)2/n. The (spectral flowed) primary fields Ψw
j,m are mapped to the Uγ′ = e2iγ′ϕ

in the Liouville theory, with

γ′ = − 1√
n

(j + 1) +

√
n

2
. (4.18)

The map between correlation functions can be obtained from (4.15), (4.18) by taking

n → −n and j → −h.

After the Wick rotation, this theory becomes the time-like Liouville theory [41, 42].

It has the same central charge as the minimal (1, n) model. Thus we can expect that the

correlation functions in this Liouville theory and the minimal (1, n) model are the same.

For (p, q) (1 < p < q) models, this equivalence was checked in [43] by computing the three

point functions.

The minimal (1, n) model can not be regarded as a minimal model in a usual sense

because its Kac table is empty (there are only (p − 1)(q − 1)/2 primaries in the Kac table

of minimal (p, q) model). However, it is known that such a matter CFT coupled with the

Liouville theory is a well-defined string theory and it plays an important role especially

from the matrix model viewpoint (see e.g. the review [44]). In particular, one can deform

the (1, n) minimal string into the (p, n) minimal string as can be understood from the

integrable hierarchy arguments.

There are infinitely many physical states in the (1, n) minimal string. In the Coulomb

gas representation they are given by

cT(r,s) = cW(r,s) · e
r+1−(s−1)n√

n
φ

(r = 1, 2, . . . , n − 1, s = 1, 2, 3, . . .) . (4.19)

The r-quantum number is truncated as usual by the screening charge, while s is unre-

stricted. (see [45, 46, 20] for more details). The operators W(r,s) are the primary fields in

the (1, n) model

W(r,s) = e2iαr,sϕ, αr,s = −1 − r

2

1√
n

+
1 − s

2

√
n . (4.20)

The particular operators T(r,1) (i.e. s = 1) will play an important role in the later

discussions. In the context of topological gravity (see the appendix B), they correspond

to the matter chiral states while the others s = 2, 3, · · · are the gravitational descendants.

The lowest one T(1,1) is called the puncture operator.

If we combine results of the previous and present subsections, we can find an interesting

connection between the supercoset (2.29) and the (1, n) minimal string. Indeed we found

that the SL(2, R) part is mapped to the bosonic Liouville theory (cL = 1 + 6(n + 1)2/n),

while the SU(2) part is mapped to the (1, n) model (cm = 1− 6(n− 1)2/n). Together they

give the matter part of the minimal (1, n) model (note that cm + cL = 26). This motivates

us to investigate the correlation functions further in order to see if those two theories are

related.
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4.4 Four point functions

Now we move back to the analysis of the scattering amplitudes (4.1). Let us begin with

the four point functions. By applying the formula (4.15), we can rewrite the four point

function for the vertices (4.5). Since the total winding number is
∑4

i=1 wi(= −2
∑

i si) = 2

in the SL(2, R) sector, it is maximally winding number violating amplitude. On the other

hand, in the SU(2) sector, it corresponds to minimal winding number violation. Then we

can employ the simplified formula (4.18) and its counterpart on the SU(2) side.

In addition to the four point function in the bosonic Liouville and the (1, n) model,

we encounter some complicated factors of the form
∏

l<l′ |z
βll′
ll′ |2 when we evaluate (4.2).

First of all, such factors arise in the formula (4.15) in both SU(2) and SL(2) sectors. Also

we have to take into account similar factors (2.22) and (2.28) , which arise when we relate

the correlation functions of the N = 2 cosets to the original WZW models via (2.20) and

(2.26). Interestingly, we find that all these factors are almost canceled with each other,

leaving us the simple factors |z1 − z2|2|z3 − z4|2. Combined with the similar factors in the

original expression (4.2) we obtain |z2 − z3|2|z2 − z4|2|z3 − z4|2 in the end. Notice that this

is the same as the familiar c-ghost correlation function 〈c(z2)c̄(z2)c(z3)c̄(z3)c(z4)c̄(z4)〉.
In this way we can relate the four point functions in N = 4 TST to the ones in (1, n)

minimal bosonic string (refer to [47], [48] for the correlation functions in minimal bosonic

string) as follows

A4 = C · δ(4)

(

4
∑

i=4

hi − 2 − n

)

·
∫

d2z1〈c(z2)c̄(z2)c(z3)c̄(z3)c(z4)c̄(z4)〉

×
〈

T(r1,1)(z1, z̄1) T(r2,1)(z2, z̄2) T(r3,1)(z3, z̄3) T(r4,1)(z4, z̄4)
〉

, (4.21)

where the fields T(r,1) are the physical vertex operators in (1, n) bosonic string, defined in

(4.19), and they correspond to the operators Vh=1,3/2,···,n/2 in (4.5) via the relation

r = n + 1 − 2h (= 1, 2, . . . , n − 1) . (4.22)

This relation between h and r comes from the maps (4.14) and (4.18). The factor C is

an overall constant C = −2i
π2n

· ( cn+2c−n+2

π2 )2
(

Γ(0)
Γ(1)

)8
; we can absorb the divergent piece21

(Γ(0)2

Γ(1)2 )N in the normalization of each vertex Vhi
in the N = 4 TST.

We have found that the physical states Vh=1,3/2,...,n/2 (3.12) in the N = 4 topological

string on ALE spaces are in one to one correspondence with the states T(r=1,2,...,n−1, s=1)

in the minimal (1, n) string. It is also natural to expect that the other states T(r,s>1) may

correspond to some other physical states in the N = 4 topological string in a way similar

to the gravitational descendants, though we will not discuss this issue in this paper.

Then the four point functions can be written simply as follows (up to an unimportant

factor and the delta function in the (4.22))

A4 = 〈T(r1,1)T(r2,1)T(r3,1)T(r4,1)〉(1,n)string . (4.23)

21We can also absorb the factor cn+2c−n+2π
−2 in the normalization. This is because the N-point functions

always include the factor (cn+2c−n+2π
−2)N−2.
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In addition we have the following constraint from the R-charge conservation (i.e. the

δ-function in (4.21))

4
∑

i=1

hi = 2 + n,

(

or equivalently

4
∑

i=1

ri = 2n

)

. (4.24)

This constraint is not clear from the viewpoint of the (1, n) minimal string.

On the other hand, if we apply the other equivalent representation (4.6), then we find

another expression after a similar analysis

A4 = 〈T(r̃1,1) T(r̃2,1) T(r̃3,1) T(r̃4,1)〉(1,n)string , (4.25)

with the same constraint (4.24). Here we defined the integer r̃ by

r̃ ≡ n − r = 2h − 1 (= 1, 2, . . . , n − 1) . (4.26)

These two expressions (4.23) and (4.25) should be identical. This suggests that the

theory has the Z2 global symmetry which replaces all of the operators T(r,1) with the T(r̃,1).

This symmetry is consistent with the four point function expression22 conjectured in [13]

from the duality between Heterotic string on T 4 and Type II string on K3

A4 = min{ri, n − ri} . (4.27)

4.5 Five point functions

Now let us proceed to five point functions. In this case we can still rewrite the correlation

functions in terms of those in the (1, n) minimal string. We have two choices for the

integrated operator corresponding to the action of G− and G̃−. We can again apply the

formula (4.18) and simplify the total expression in the same way as in the four point

function case. In the end, we obtain the following results classified into four cases

A
(1)
5 =

〈(
∫

J−−
0R J−−

0L Vh1

)

(J−−
0R J−−

0L Vh2) · Vh3 · Vh4 ·
(

∫

G−
−1/2RG−

−1/2LVh5

)〉

= 〈T(r1,1)T(r2,1)T(r3,1)T(r4,1)T(r5,1)〉(1,n)string when
∑

i

hi = 2 + 3n/2 ,

A
(2)
5 =

〈(
∫

J−−
0R J−−

0L Vh1

)

(J−−
0R J−−

0L Vh2) · Vh3 · Vh4 ·
(

∫

G−
−1/2RG−

−1/2LVh5

)〉

= 〈T(r̃1,1)T(r̃2,1)T(r̃3,1)T(r̃4,1)T(r̃5,1)〉(1,n)string when
∑

i

hi = 2 + n ,

A
(3)
5 =

〈(
∫

J−−
0R J−−

0L Vh1

)

(J−−
0R J−−

0L Vh2) · Vh3 · Vh4 ·
(

∫

G̃−
−1/2RG̃−

−1/2LVh5

)〉

22It is intriguing to note that this expression coincides with the four point function [49] in the topological

gravity with (n − 1)-th minimal matter. The latter theory is usually associated with (1, n + 1) bosonic

string without Liouville potential as reviewed in appendix B, instead of (1, n) minimal bosonic string with

Liouville wall. The possibility of the connection between the N = 4 TST and the (1, n+1) string has already

been implied in [19] from the analysis of R-charge conservation. For more details see the appendix B.
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= 〈T(r1,1)T(r2,1)T(r3,1)T(r4,1)T(r5,1)〉(1,n)string when
∑

i

hi = 3 + 3n/2 ,

A
(4)
5 =

〈(
∫

J−−
0R J−−

0L Vh1

)

(J−−
0R J−−

0L Vh2) · Vh3 · Vh4 ·
(

∫

G̃−
−1/2RG̃−

−1/2LVh5

)〉

= 〈T(r̃1,1)T(r̃2,1)T(r̃3,1)T(r̃4,1)T(r̃5,1)〉(1,n)string when
∑

i

hi = 3 + n , (4.28)

where again we defined r̃ = n − r. The above results for A(1) and A(3) are found by using

the expressions (4.5) (4.7) (4.10), while those for A(2) and A(4) are done by applying (4.6)

(4.8) (4.11).

4.6 N(≥ 6)-point functions

In the case of N(≥ 6)-point functions, the amplitudes (4.2) vanish unless the following

R-charge conservation is satisfied

N
∑

i=1

hi = n + 2 + l1 +
n

2
l2 , (4.29)

where the integers l1 and l2 takes the values l1,2 = 0, 1, 2, . . . , (N − 4). If the numbers

of insertions of G−(sl), G−(su), G̃−(su) and G̃−(sl) are denoted by a, b, c and d, then the

integers l1 and l2 are written as l1 = N − 4 − a − b and l2 = a + c.

We can again rewrite the N -point functions in terms of the correlation functions in

the bosonic Liouville theory using (4.15). Unlike the four and five-point functions, it is not

obvious how to reduce the general N -point functions to those in the (1, n) string as long

as we proceed just as before. This is because we do not have the maximally or minimally

winding violation
∑

i wi = ±(N − 2) in general and we cannot eliminate the insertions of

V− 1
2b

(ya) in (4.15).

However, we can find that some of the amplitudes can be rewritten in terms of the (1, n)

string by applying (4.18). Consider the N−point function A
(1)
N which includes (N − 4− l1)

G−(sl)Vh operators and l1 G̃−(su)Vh ones, and also its dual amplitude A
(2)
N obtained via

r → r̃. We can show23 that they are the same as the (1, n) minimal string amplitudes

A
(1)
N = 〈T(r1,1)T(r2,1) . . . T(rN ,1)〉(1,n)string when

∑

i

hi = (N − 2)
n

2
+ 2 + l1 ,

A
(2)
N = 〈T(r̃1,1)T(r̃2,1) . . . T(r̃N ,1)〉(1,n)string when

∑

i

hi = n + 2 + l1 , (4.30)

where l1 = 0, 1, . . . , N − 4. These correspond to l2 = N − 4 and l2 = 0, respectively in

(4.29).

Naively, amplitudes other than (4.30) do not seem to be reduced to the ones in the

(1, n) string. If we apply (4.15) and rewrite them, then they will include the extra insertions

of integrated operators of the form
∫

dyV−1/2b(y). However, we cannot deny the possibility

23This consideration also determines the normalization of each vertex Va in (4.2). We rescale the operators

V1,2,3,4 by multiplying the factor π2(cn+2c−n+2)
−1Γ(0)−2. For the other integrated vertex operators, in

addition to this factor, we also need to multiply i for each G− action and −i for G̃− action.
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that one can still relate the generic N ≥ 6 amplitudes to the (1, n) string amplitudes by

performing the integral explicitly. This point needs future investigations and we will not

pursue it here.

4.7 N = 4 topological string on A1 space and matrix model for (1, 2) string

It is well-known that the (1, n) minimal string is equivalent to the double scaled multi-

matrix model. In the simplest case of the (1, 2) string (c = −2 string), it can also be

thought of as the k = 1 case of the (2, 2k − 1) series. Then its matrix model dual is simply

given by the gaussian one matrix model [9]. Since this matrix model can be solved exactly,

we would like to use it to obtain the scattering amplitudes in N = 4 topological string on

the A1 type ALE space (Eguchi-Hanson space).

In this case the tree level correlation functions look like24 [9, 50]

〈

N
∏

i=1

T(1,si)

〉

= (4.31)

= µ
P

si−2N+3 Γ(
∑

i si − N + 1)

Γ(
∑

i si − 2N + 4)
· log µ,

(

∑

i

si − 2N + 3 ≥ 0

)

= µ
P

si−2N+3Γ

(

∑

i

si − N + 1

)

Γ

(

2N − 3 −
∑

i

si

)

,

(

∑

i

si − 2N + 3 < 0

)

,

where we assumed
∑

i si − N + 1 ≥ 1. Note that the terms with the positive powers of

µ are accompanied with log µ, which is explained by the infinite volume in the Liouville

direction. Thus they survive the double scaling limit along with the terms with negative

powers of µ.

When we keep only the terms with log µ singularity, the free energy F/ log µ = t3/6−
1/12 and the scattering amplitudes (4.31) only include non-negative integer powers of the

cosmological constant µ. In this sense the theory becomes topological and it is known to

be equivalent to the pure topological gravity [51]. The similar model in the (1, n) case is

also known to be the same as the topological gravity coupled to the (n − 2)-nd minimal

topological matter [34, 52, 49, 53, 44]. Its matrix model dual is given by the generalized

Kontsevich model. In the relation to the N = 4 topological string we also need to keep

the terms with negative powers of µ so that the R-charge conservation (4.24) or (4.29) is

satisfied.

Now let us consider the N -point functions of the N = 4 topological string, which only

involve the integrated operators of the form
∫

G−
LG−

RVh. Since in the n = 2 case, the SU(2)

sector becomes trivial, we can only insert G−(sl) to obtain non-zero result. Hence all such

tree level correlation functions can be rewritten in terms of the amplitudes of the (1, 2)

minimal string just as we did for A
(1)
N in (4.30). Now we can use the matrix model result

(4.31) to compute these N−point correlation functions

AN = µ3−N · (N − 4)! . (4.32)

24Only in this subsection we recover the dependence on the cosmological constant to make things clear.
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5. Discussion: toward matrix model for minimal N = 2 string

In this paper we studied the N = 2 minimal string and its connection to the (1, n) minimal

bosonic string. The N = 2 minimal string is equivalent to the N = 4 topological string

near the ALE singularity. We concentrated on a particular set of physical states which

correspond to the Kähler and complex structure deformations of the underlying geometry.

Then we found one to one correspondence between them and physical states in the (1, n)

minimal string. It would be interesting to perform an exhaustive cohomology analysis and

see if they are indeed equivalent at the free theory level.

To investigate this relation at the interaction level, we computed the closed string

scattering amplitudes in the N = 2 minimal string or equivalently in the N = 4 topological

string on ALE spaces. Indeed we found an intriguing connection to the (1, n) minimal

string. In particular, we showed that all four and five-point functions can be rewritten in

terms of those of the (1, n) minimal bosonic string. We were not able to match generic

N(≥ 6)-point functions in the N = 2 string to that of the (1, n) bosonic string although

some classes of the higher point amplitudes do match.

These results suggest that these two string theories are closely related. On the other

hand there also seem to be important distinctions. In particular we encountered the R-

charge conservation like (4.24), which is not easy to understand from the viewpoint of (1, n)

string. Also methods used in this paper do not allow to match generic six and higher point

functions. It would be interesting to understand whether these problems are artefact of

the method or they indicate the non-equivalence of the two theories. Therefore it is very

important to have future progress on both sides. Below we would like to discuss a possible

matrix model dual for the N = 2 minimal string inspired by this connection.

5.1 ADE matrix model

It is very natural to expect that there exists a matrix model dual for the minimal N = 2

string or equivalently for the N = 4 topological string on ALE spaces, as is true both in the

bosonic and type 0 minimal string. We expect that the dual matrix model is equivalent to

an open string theory of infinitely many D0-branes in that string theory. It is dual to the

closed string theory via the holography as was so in the two dimensional string theory [6].

Refer to [54, 55] for recent discussions of open-closed duality for (1, n) minimal string in

different contexts.

The relevant D-branes in our model should be the D2-branes wrapped on n−1 2-cycles

in the An−1 ALE space. Indeed one can construct corresponding N = 2 supersymmetric

(B-type) boundary states25 [56]. The open string theory is expected to be described by a

quiver-like theory with n − 1 nodes and n − 2 arrows.

We would like to point out that a possible matrix model dual of the N = 2 string on

ADE ALE spaces may be given by the Kostov’s ADE matrix model [57]. It is defined by

25Furthermore, one can show that the B or A-type boundary states preserve N = 4 boundary conformal

symmetry in ĉ = 2 theory as is natural from the viewpoint of N = 4 topological string.
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the following matrix model action in the An−1 case

S =
n−1
∑

a=1

Tr
[

U(Φ(a)) + M (a)M̄ (a)
]

+
n−2
∑

a=1

[

M̄ (a)Φ(a)M (a) + M̄ (a)M (a)Φ(a+1)
]

. (5.1)

Generalization to Dn or En case is straightforward. In the An−1 quiver, the eigenvalues

of the adjacency matrix Ca,b take the values β(p) = 2cos(πp), where p runs the values

p = 1
n , 2

n , · · ·, n−1
n . Correspondingly, the matrix model is known to describe the non-critical

bosonic string with the matter central charge c = 1 − 6p2

1−p after a suitable double scaling

limit. The choice of p corresponds to the choice of the background charge on the world-

sheet. This fact becomes clearer in the equivalent RSOS model description [58]. When we

choose the maximal value p = n−1
n we have c = 1− 6 (n−1)2

n , which is the same as the (1, n)

minimal bosonic string26. Notice that in the simplest case of n = 2, the matrix model (5.1)

is reduced to the gaussian one matrix model, which is known to be equivalent to the (1, 2)

string.

The eigenvectors of Ca,b are given by v
(a)
p =

√

2
n sin(πpa). For each p = h

n (h =

1, 2, . . . , n − 1), we have a corresponding operator which may be identified with the closed

string primary T(r=h,1) (4.19). The integer h is the discrete Fourier transformation with

respect to the ‘position’ a = 1, 2, .., n − 1. Notice also that the Z2 symmetry T(r,1) ↔
T(r̃=n−r,1) mentioned in section 4.4 becomes obvious in this description, being identified

with the Z2 reflection symmetry of An−1 Dynkin diagram.

5.2 World-sheet discretization

Another way to find a matrix model dual to closed string is via worldsheet discretization.

How should the candidate matrix model discretize the worldsheet of the N = 4 topological

string embedded into the ALE space? Since the string theory is topological, we expect

that the worldsheet is localized on the non-trivial two-cycles of the target space. Then the

sigma model map from a Riemann surface Σ to the An−1 ALE space is now reduced to

a map from Σ to the n − 1 points. These n − 1 points specify which 2-cycle a point on

the Riemann surface is situated at. Hence the worldsheet is divided into regions, and the

adjacent regions are mapped into the adjacent two cycles.

The ADE matrix model (5.1) does precisely this as we explain below. When we pick

a Feynman diagram for (5.1), we find that the chains of propagators of M (a) field behave

as non-intersecting loops. They divide the whole net of the Feynman diagram into regions

bounded by these loops (see the left figure in Fig. 1). Such a model is known as the loop

gas model (or O(n) model). By taking its dual lattice, it is also equivalent to the model

called RSOS model [58].

From this viewpoint, we have infinitely many domains surrounded by the loops on

random Riemann surfaces. We can assign one number a (called height variable) out of the

n − 1 integers a = 1, 2, 3, . . . , n − 1 to each domain. In the matrix model (5.1) language,

26We can get a similar range of matter central charge for affine Â2n−1 quiver matrix model. We believe

this corresponds to the non-minimal (1, n) string which is equivalent to the N = 2 topological string on

SL(2, R)/U(1) [39].
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Discretized World-Sheet A7 ALE Space

a=3

a=2

a=1

1 2 3 4 5 6 7

2 cyclesmap

World-sheet

Figure 1: Discretization of world-sheet and the sigma-model map into A7 ALE space.

this is the index a of the matrices Φ(a). Then we have the requirement that the two

domains which are adjacent should take the values a which are different from each other

by ±1 as is clear from the matrix model. Finally we assign a specific weight for a loop and

sum over all such configurations. In this way we find that this model describes the map

from a random surface to n − 1 points (specified by the integer a) as we expected for the

topological string on ALE spaces (see the right figure in Fig.1). Notice that this integer

a describes the types of 2-cycles which D2-branes are wrapped on and thus this matches

the above observation. The origin of N = 2 world-sheet supersymmetry is not clear from

this observation, unfortunately. This issue has not completely been understood even in the

type 0 string theory, though there have been some progress [54]. We leave further analysis

for future publications.
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A. N = 4 topological string on C2/Zn

Here we study physical states of the N = 4 topological string on C
2/Zn (see also [17]

for N = 2 string on C
2/Z2). The world-sheet theory is described by the scalar fields

(X1,X2, X̄1, X̄2) and their superpartners (ψ1, ψ2, ψ̄1, ψ̄2). The Zn orbifold action is defined

by (X1,X2) → (e2πi/nX1, e−2πi/nX2). The (left-moving) superconformal generators are

G+ = ∂X̄1ψ1 + ∂X̄2ψ2, G̃+ = ∂X1ψ2 − ∂X2ψ1 . (A.1)

In the k−th and (n − k)-th twisted sector of the bosonic part of Zn orbifold, the ground

states are represented by the twist operators σ±(z, z̄), which are defined by the OPEs

(i = 1, 2)

∂X1(z)σ1
+(0) ∼ z−1+k/nτ1

+, ∂X̄1(z)σ1
+(0) ∼ z−k/nτ1

+′ ,
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∂̄X1(z̄)σ1
+(0) ∼ z̄−k/nτ̃1

+, ∂̄X̄1(z̄)σ1
+(0) ∼ z̄−1+k/nτ̃1

+′ ,

∂X1(z)σ1
−(0) ∼ z−k/nτ1

−, ∂X̄1(z)σ1
−(0) ∼ z−1+k/nτ1

−′ ,

∂̄X1(z̄)σ1
−(0) ∼ z̄−1+k/nτ̃1

−, ∂̄X̄1(z̄)σ1
−(0) ∼ z̄−k/nτ̃1

−′ . (A.2)

The similar OPE between X2 and σ2
± can be obtained by replacing k/n with 1 − k/n

in (A.2). Notice also that if we go around σ1
± once, we will get the twist by e±2πik/n.

Therefore, we are indeed considering the k−th and (n − k)−th twisted sector at the same

time.

The condition (3.11) requires that the OPEs G+(z)Vphys(0), G̃+(z) Vphys(0), G+(z̄)

Vphys(0) and G̃+(z̄)Vphys(0) do not include the singularities z−n or z̄−n (n ≥ 1). Then we

can find only one physical state in each k−th twisted sector

V
N=4TST (k)
phys = σ1

+σ2
+ei k

n
H1ei(1− k

n
)H2ei(1− k

n
)H̃1ei k

n
H̃2 , (A.3)

where H1,2 are the bosonizations of the left-moving fermions ψ1,2(z) = eiH1,2 (OPEs are

Hi(z)Hj(0) ∼ −δij log z). H̃1,2 are the ones for the right-moving part.

Indeed it has the R-charges J3 = J̃3 = 1 and the conformal dimension ∆ = 1/2 before

twisting (notice that ∆(σ±) = −1
2( k

n)2 + 1
2 ( k

n)). This operator (A.3) is (chiral, chiral)

primary in the N = 2 SCFT and also belongs to the k−th twisted sector. By replacing

σ1,2
+ with σ1,2

− , we find the physical state for (n − k)−th twisted sector. In this way we

found n − 1 twisted sector physical states. Geometrically they nicely correspond to the

n−1 blowing up modes in the An−1 ALE space. This number of physical states agrees with

the singular ALE model studied in section 2, as we expected because these two different

backgrounds should correspond to two different points in the moduli space of An−1 ALE

space. Note also that in this model we do not have the states written as G+
−1/2V opposite

to the singular ALE case. Equivalently there are no (−1,−1) picture physical states in this

N = 2 string except the trivial one.

B. Topological gravity

Consider the twisted p−th N = 2 minimal model (c = 3p
p+2) corresponding to the LG

potential W = Xp+2 [34]. We can use the twisted N = 2 minimal model as a matter

theory to define the topological gravity [49, 59, 53] (see also the excellent review [44]

on these matters). The most important physical states are chiral primaries and can be

expressed as φ(m) ∼ Xm (m = 0, 1, . . . , p). The lowest operator φ(0) is called the puncture

operator. There are other types of physical states called gravitational descendants, which

we will not consider here.

The state φ(m) has the R-charge q = m
p+2 . The N−point amplitudes are defined by

AN =

〈

φ(i1)φ(i2)φ(i3)
N
∏

a=4

∫

G−
LG−

Rφ(ia)

〉

. (B.1)

The R-charge (or ghost charge) conservation leads to

N
∑

i=1

mi

p + 2
− (N − 3) = ĉ = 1 − 2

p + 2
. (B.2)
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As we have mentioned in section 4, this theory of topological gravity is known to be

equivalent to the (1, n) minimal bosonic string [52, 45]. In this context, the condition (B.1)

can be understood by considering a minimal (1, n) bosonic string without Liouville potential

(but with the screening charge in the minimal matter sector). We identify φ(m) with the

tachyon operator

T(r=n−1−m,s=1) = W(r,1) · e
(n−m)√

n
φ

, (B.3)

setting n = p+2. Indeed the momentum conservation in the Liouville φ direction coincides

with (B.2). Furthermore, we can even prove that all tree level N -point functions of the

N = 2 twisted minimal model are the same as those in the (1, n) minimal string using the

relation (4.15). Since this computation is analogous to what we did in section 4 for the

SU(2)/U(1) sector, we omit the details.

In topological gravity, we usually talk about correlation functions expanding around

the point where the cosmological constant is vanishing. Three and four point function

[59], [49] are given by

〈φm1φm2φm3〉 = δm1+m2+m3,p ,

〈φm1φm2φm3φm4〉 =
1

p + 2
min(mi, p + 1 − mi) · δm1+m2+m3+m4,2p+2 . (B.4)

The delta-function in three point function comes from the R-charge conservation as already

mentioned.

Finally, let us compare this with N = 4 TST. Looking at the SU(2) part in our case,

let us identify27 r = n − m assuming p = n − 1. The state m = 0 is almost trivial as it

vanishes when acted upon by G− and thus it is plausible that it is absent in N = 4 TST.

Then (B.2) can be rewritten as
∑N

i=1 ri = 2n + 4 − N . This agrees with the R-charge

constraint of the four point function A(4) and the special amplitudes A
(1)
N at l1 = N − 4

in (4.24) (4.30). Also the four point function itself agrees (up to a constant) with the four

point function (B.4) in N = 4 TST obtained from the Het/TypeII duality setting n = p+1

again. Even though it is possible that this is just a coincidence, it would be interesting to

see if this is indeed true in general amplitudes.

C. Closed string partition functions

Here we compute the partition function for the N = 2 minimal string. Define the NS-sector

N=2 character for the ĉ = 2 matter N=2 SCFT as usual

Zĉ=2(τ, z) = Tr
[

qL0−c/24q̄L̄0−c/24yJ0 ȳJ̄0

]

, (C.1)

where q = e2πτ and y = e2πiz . The expression of the N = 2 string partition function is

given by [28], [19]

ZN=2 =

∫

dτdτ̄

τ2

∫

dzdz̄|Zĉ=2(τ, z)|2|Zgh(τ, z)|2 , (C.2)

where (τ, τ̄) denotes the ordinary torus moduli and (z, z̄) denote the U(1) gauge field moduli

peculiar to N = 2 string; we parameterized z = θ1 + τθ2 assuming 0 ≤ θ1,2 < 1.

27Notice that this is different from more standard one (B.3).
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The part Zgh(τ, z) represents the ghost partition function and it is explicitly ex-

pressed as

Zgh(z|τ) =
η(τ)6

θ3(z|τ)2
. (C.3)

Let us proceed in our specific example (2.29), taking into account the continuous modes

and not the discrete states for simplicity. We expect this is enough if we are interested in

the bulk terms which behave like ∼ log µsl, where µsl is the N = 2 cosmological constant

as we usually do in the bosonic or type 0 non-critical string to compare matrix models.

The final result reads

ZN=2 = c · log µsl

∫

dτdτ̄

(τ2)2

∫ 1

0
dθ1dθ2 (τ2)

3/2|η(τ)|6
∑

l,l′

Nl,l′χ
(l)(τ, 0)χ(l′)(τ̄ , 0) . (C.4)

χ(l) is the spin j = l/2 character of SU(2)n−2 WZW model. The Nl,l′ represents the

multiplicity of primaries and it is well-know that it has the ADE classification corresponding

to the ADE classification of ALE spaces [19, 14, 60]. c is a computable constant if we fix

normalization. This expression (C.4) is manifestly N = 2 modular invariant. Notice that

the partition function in the end does not depend on z as was also true in the N = 2 string

on R
2,2.

Even though this expression (C.4) is clear from the equivalent CHS geometry Rφ ×
SU(2)n−2, it is instructive to derive it from the viewpoint of the N = 2 minimal model

coupled to the N = 2 Liouville theory. We write the bosonic fields in the N = 2 Liouville

theory as (Y, φ). The matter partition function (C.1) is divided into the Liouville part and

the other contributions Zĉ=2 = ZLZothers. The former is simply given by

Zφ = log µsl ·
1√

τ2|η(τ)|2 . (C.5)

By imposing that the R-charge is integral, we have m/N − Qp ∈ Z, where (l,m) is the

primary (2.4) of N = 2 minimal model and p is the Y −momentum. This projection is

equivalent to the Zn orbifold in (2.29). Then we find

Z
(l)
others =

N−2
∑

l=0

∑

m∈Z2N

θ3(z|τ)

η(τ)
chNS

lm (τ, z)
Θm,N (τ,−2z/N) + Θm+N,N (τ,−2z/N)

η(τ)

=
N−2
∑

l=0

θ3(z|τ)

η(τ)2
χ(l)(τ, 0) , (C.6)

where we adopt the convention and applied an important identity in [60]. Each three

factors in the second expression in (C.6) are the contributions from the fermions in the

N = 2 Liouville, the N = 2 minimal model and the Y boson, respectively.

References

[1] S. Nakamura and V. Niarchos, Notes on the S-matrix of bosonic and topological non-critical

strings, JHEP 10 (2005) 025 [hep-th/0507252].

– 27 –

http://jhep.sissa.it/stdsearch?paper=10%282005%29025
http://xxx.lanl.gov/abs/hep-th/0507252


J
H
E
P
0
6
(
2
0
0
6
)
0
2
7

[2] M. Ademollo et al., Dual string with U(1) color symmetry, Nucl. Phys. B 111 (1976) 77;

For a review, refer to N. Marcus, A tour through N = 2 strings, hep-th/9211059.

[3] H. Ooguri and C. Vafa, Selfduality and N = 2 string magic, Mod. Phys. Lett. A 5 (1990)

1389; Geometry of N = 2 strings, Nucl. Phys. B 361 (1991) 469.

[4] D.J. Gross and N. Miljkovic, A nonperturbative solution of D = 1 string theory, Phys. Lett. B

238 (1990) 217;

E. Brezin, V.A. Kazakov and A.B. Zamolodchikov, Scaling violation in a field theory of

closed strings in one physical dimension, Nucl. Phys. B 338 (1990) 673;

P.H. Ginsparg and J. Zinn-Justin, 2D gravity + 1D matter, Phys. Lett. B 240 (1990) 333.

[5] T. Takayanagi and N. Toumbas, A matrix model dual of type 0B string theory in two

dimensions, JHEP 07 (2003) 064 [hep-th/0307083];

M.R. Douglas et al., A new hat for the c = 1 matrix model, hep-th/0307195.

[6] J. McGreevy and H.L. Verlinde, Strings from tachyons: the c = 1 matrix reloaded, JHEP 12

(2003) 054 [hep-th/0304224];

I.R. Klebanov, J.M. Maldacena and N. Seiberg, D-brane decay in two-dimensional string

theory, JHEP 07 (2003) 045 [hep-th/0305159];

J. McGreevy, J. Teschner and H.L. Verlinde, Classical and quantum D-branes in 2D string

theory, JHEP 01 (2004) 039 [hep-th/0305194];

A. Sen, Open-closed duality: lessons from matrix model, Mod. Phys. Lett. A 19 (2004) 841

[hep-th/0308068];

T. Takayanagi and S. Terashima, c = 1 matrix model from string field theory, JHEP 06

(2005) 074 [hep-th/0503184].

[7] A. Konechny, A. Parnachev and D.A. Sahakyan, The ground ring of N = 2 minimal string

theory, Nucl. Phys. B 729 (2005) 419 [hep-th/0507002].

[8] T. Takayanagi, Notes on S-matrix of non-critical N = 2 string, JHEP 09 (2005) 001

[hep-th/0507065].

[9] M.R. Douglas and S. H. Shenker, Strings in less than one-dimension, Phys. Lett. B 335

(1990) 635;

D.J. Gross and A.A. Migdal, Nonperturbative two-dimensional quantum gravity, Phys. Rev.

Lett. 64 (1990) 127;

E. Brezin and V.A. Kazakov, Exactly solvable field theories of closed strings, Phys. Lett. B

236 (1990) 144.

[10] I.R. Klebanov, J.M. Maldacena and N. Seiberg, Unitary and complex matrix models as 1D

type 0 strings, Commun. Math. Phys. 252 (2004) 275 [hep-th/0309168].

[11] D. Kutasov, Introduction to little string theory, prepared for ICTP Spring School on

Superstrings and Related Matters, Trieste, Italy, 2-10 Apr 2001.

[12] O. Aharony, A brief review of ’little string theories’, Class. and Quant. Grav. 17 (2000) 929

[hep-th/9911147].

[13] O. Aharony, B. Fiol, D. Kutasov and D.A. Sahakyan, Little string theory and

heterotic/type-II duality, Nucl. Phys. B 679 (2004) 3 [hep-th/0310197].

[14] O. Aharony, M. Berkooz, D. Kutasov and N. Seiberg, Linear dilatons, NS5-branes and

holography, JHEP 10 (1998) 004 [hep-th/9808149].

– 28 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB111%2C77
http://xxx.lanl.gov/abs/hep-th/9211059
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA5%2C1389
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA5%2C1389
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB361%2C469
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB238%2C217
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB238%2C217
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB338%2C673
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB240%2C333
http://jhep.sissa.it/stdsearch?paper=07%282003%29064
http://xxx.lanl.gov/abs/hep-th/0307083
http://xxx.lanl.gov/abs/hep-th/0307195
http://jhep.sissa.it/stdsearch?paper=12%282003%29054
http://jhep.sissa.it/stdsearch?paper=12%282003%29054
http://xxx.lanl.gov/abs/hep-th/0304224
http://jhep.sissa.it/stdsearch?paper=07%282003%29045
http://xxx.lanl.gov/abs/hep-th/0305159
http://jhep.sissa.it/stdsearch?paper=01%282004%29039
http://xxx.lanl.gov/abs/hep-th/0305194
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA19%2C841
http://xxx.lanl.gov/abs/hep-th/0308068
http://jhep.sissa.it/stdsearch?paper=06%282005%29074
http://jhep.sissa.it/stdsearch?paper=06%282005%29074
http://xxx.lanl.gov/abs/hep-th/0503184
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB729%2C419
http://xxx.lanl.gov/abs/hep-th/0507002
http://jhep.sissa.it/stdsearch?paper=09%282005%29001
http://xxx.lanl.gov/abs/hep-th/0507065
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB335%2C635
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB335%2C635
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C64%2C127
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C64%2C127
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB236%2C144
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB236%2C144
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C252%2C275
http://xxx.lanl.gov/abs/hep-th/0309168
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C17%2C929
http://xxx.lanl.gov/abs/hep-th/9911147
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB679%2C3
http://xxx.lanl.gov/abs/hep-th/0310197
http://jhep.sissa.it/stdsearch?paper=10%281998%29004
http://xxx.lanl.gov/abs/hep-th/9808149


J
H
E
P
0
6
(
2
0
0
6
)
0
2
7

[15] C.G. Callan Jr., J.A. Harvey and A. Strominger, World sheet approach to heterotic

instantons and solitons, Nucl. Phys. B 359 (1991) 611.

[16] A. Giveon and D. Kutasov, Comments on double scaled little string theory, JHEP 01 (2000)

023 [hep-th/9911039].

[17] D. Gluck, Y. Oz and T. Sakai, N = 2 strings on orbifolds, JHEP 08 (2005) 008

[hep-th/0503043].

[18] N. Berkovits and C. Vafa, N = 4 topological strings, Nucl. Phys. B 433 (1995) 123

[hep-th/9407190].

[19] H. Ooguri and C. Vafa, Two-dimensional black hole and singularities of CY manifolds, Nucl.

Phys. B 463 (1996) 55 [hep-th/9511164].

[20] L. Rastelli and M. Wijnholt, Minimal AdS3, hep-th/0507037.

[21] A.V.Stoyanovsky, A relation between the Knizhnik-Zamolodchikov and

Belavin-Polyakov-Zamolodchikov systems of partial differential equations, math-ph/0012013.

[22] S. Ribault and J. Teschner, H+

3 WZNW correlators from Liouville theory, JHEP 06 (2005)

014 [hep-th/0502048].

[23] S. Ribault, Knizhnik-Zamolodchikov equations and spectral flow in AdS3 string theory, JHEP

09 (2005) 045 [hep-th/0507114].

[24] G. Giribet and Y. Nakayama, The stoyanovsky-ribault-teschner map and string scattering

amplitudes, hep-th/0505203;

G. Giribet, The string theory on AdS3 as a marginal deformation of a linear dilaton

background, Nucl. Phys. B 737 (2006) 209 [hep-th/0511252].

[25] Z. a. Qiu, Modular invariant partition functions for N = 2 superconformal field theories,

Nucl. Phys. B 198 (1987) 497

[26] J.M. Maldacena and H. Ooguri, Strings in AdS3 and SL(2, R) WZW model, I, J. Math. Phys.

42 (2001) 2929 [hep-th/0001053];

J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS3 and the SL(2, R) WZW model, II.

Euclidean black hole, J. Math. Phys. 42 (2001) 2961 [hep-th/0005183];

J.M. Maldacena and H. Ooguri, Strings in AdS3 and the SL(2, R) WZW model, III.

Correlation functions, Phys. Rev. D 65 (2002) 106006 [hep-th/0111180].

[27] J. Distler, Z. Hlousek and H. Kawai, Superliouville theory as a two-dimensional,

superconformal supergravity theory, Int. J. Mod. Phys. A 5 (1990) 391.

[28] I. Antoniadis, C. Bachas and C. Kounnas, N = 2 super-Liouville and noncritical strings,

Phys. Lett. B 242 (1990) 185.

[29] K. Hori and A. Kapustin, Duality of the fermionic 2D black hole and N = 2 Liouville theory

as mirror symmetry, JHEP 08 (2001) 045 [hep-th/0104202].
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